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Í þessari rannsókn var arfgerð, kynþroski og vöxtur steinbíts frá 
Vestfjörðum og Austfjörðum rannsökuð. Við arfgerðarrannsóknina voru 
notuð 16 erfðamörk og genið Rhodopsin. Þrátt fyrir að steinbítur sé 
staðbundin fiskur og lítið rek sé á eggjum hans og lirfum fannst ekki 
munur á arfgerð hans milli svæða eða ára með þeim erfðamörkum sem 
rannsökuð voru. Erfðarannsóknirnar sýndu minnkun stofnstærðar 
steinbíts við Ísland. Í hlýja sjónum út af Vestjörðum vex steinbítur hraðar 
og verður kynþroska yngri og minni en steinbítur í kaldari sjónum út af 
Austfjörðum. Niðurstöðurnar voru skoðaðar út frá líffræði steinbíts, 
tímalengd sem steinbítur hefur verið aðgreindur milli svæða við Ísland og 
gildi rannsóknarinnar fyrir sjálfbærar veiðar. 
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The stock structure of the Atlantic wolffish was investigated at Icelandic 
fishing grounds from two areas with different temperature regimes, 
using 16 microsatellite loci and the Rhodopsin gene. Growth and 
maturity was also examined. Despite the potential of the Atlantic 
wolffish to exhibit genetic structure (lack of eggs/larval dispersal and 
adults are sedentary), the genetic tests applied in this study did not 
detected significant genetic differentiation among the samples analyzed. 
However, the results on genetic diversity revealed a significant decrease 
in population size (bottleneck effect). Atlantic wolffish grows faster and 
matures at a younger age and smaller size in the warmer sea west of 
Iceland than in the colder sea east of Iceland. These results are discussed 
in terms of biological characteristics of Atlantic wolffish, recent isolation 
of populations and their application to sustainable fisheries 
management issues. 
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1. INTRODUCTION 
 

The exploitation of many marine fishery resources exceeds the limits of sustainable 

harvesting, and several stocks have declined drastically during the past 50 years (Christensen 

et al., 2003; Morato et al., 2006; FAO 2011). The depletion and the collapse of commercial 

fish stocks have been widely interpreted as a failure of sustainable fisheries management 

due to the mismatch between management and actual biological units (Reiss et al., 2009). 

Fish stocks are often managed under the panmixia hypothesis in spite of life history, 

behavioral, or genetic differences among components of these management units. Today, 

there is a growing body of evidence that marine fish populations do not conform to the 

classical panmictic population view, but are rather characterized by population structure on 

a much finer scale than expected from their dispersal and migratory abilities (see Hauser and 

Carvalho, 2008 for a review). Information on population structure of commercial species 

becomes therefore crucial for conservation and sustainable management of stocks (Hilborn 

et al., 2003). In recent years, genetic markers such as mtDNA (Carr and Marshall, 1991; Carr 

et al., 1995) and microsatellite loci (Beacham et al., 2002; Carlsson et al., 2006; Hoarau et al., 

2002; Pampoulie et al., 2006; Pampoulie et al., 2008c) have consequently been used 

increasingly to improve stock identification and to aid fisheries management, with some 

success (Gharrett et al., 2007; Hyde et al., 2008; Pampoulie et al., 2008b; Pampoulie et al., 

2008c; Pampoulie et al., 2011b; Rico et al., 1997; Ruzzante et al., 1997; Westgaard and 

Fevolden, 2007). 

The Atlantic wolffish (Anarhichas lupus) is widely distributed around the North Atlantic, and 

has considerable economic importance. Its abundance has decreased over the last years, at 

least in the Northwest Atlantic. Atlantic wolffish is currently listed by the Canadian Species at 

Risk Act (SARA) as species of ‘special concern’ (McCusker et al., 2008). Despite its status of 

endangered species, very few biological studies have been performed on Atlantic wolffish 

(Gunnarsson et al., 2006). Indeed most of the available studies have been carried out in the 
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context of aquaculture development. While several important commercial fish species have 

been intensively studied genetically (cod and herring for example) following their abundance 

decline and in response to the application of efficient stock discrimination methods, there is 

an obvious lack of studies on the genetic structure and on the biology of the Atlantic 

wolffish. So far, genetic markers have mostly been used for species identification (Johnstone 

et al., 2007; McCusker et al., 2008) but have rarely found any application to stock structure 

and fisheries management (but see McCusker et al., 2010). In addition, only one biological 

study has been performed on wild individuals of this species, where both growth and 

maturity were examined (Gunnarsson et al., 2006). It showed that Atlantic wolffish from two 

areas in Icelandic waters, one characterized by relative warm sea temperature and the other 

by cold sea temperature, had different growth maturity reaction norm. It is a question if this 

reaction norm is reasoned by genetic origin or not. By using neutral genetic markers it can be 

investigated whether heterozygosity-fitness correlations (HFCs) can be detected. The HFCs, 

the correlation between heterozygosity observed at marker loci and fitness related traits 

such as growth, survival, fecundity, or developmental stability, have been under study for 

decades in populations of many species. Although the correlations between genetic 

variability and fitness components as reflected by molecular marker heterozygosity in 

natural populations usually accounts for a small percentage (1–5%) of the observed 

phenotypic variance (David, 1998), there are good indicators for a genetic basis of growth or 

maturity variation among populations. For example, Pogson and Fevolden (1998) examined 

the relationships between growth and the degree of individual heterozygosity at 10 nuclear 

RFLP loci in two natural populations of Atlantic cod (Gadus morhua), using a rough measure 

of growth (size at age). A significant positive correlation was found in one population, 

supporting the hypothesis that neutral DNA markers can detect HFCs. 
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Figure 1. Atlantic wolffish in a hole or a nest on Látragrunn, Iceland, the main spawning area of Atlantic wolffish 
in Icelandic waters. The picture was taken during a research survey in 2012 performed by the Marine Research 
Institute in Reykjavík (MRI) targeting Atlantic wolffish at Látragrunn.  

 

Prior to this project, Atlantic wolffish had never been tagged with Data Storage Tags (DSTs). 

Several studies have been done on its migration pattern based on release and recapture 

with anchor- and alcathene tags. From 1966-1975, about 13 thousand Atlantic wolffish were 

tagged off Iceland. The average recovery rate was 5.5% (Jónsson, 1982). Further, that 

research showed that there are two main migrations of Atlantic wolffish off Iceland, a 

spawning and a feeding migration. In autumn, mature Atlantic wolffish migrate from shallow 

waters into deeper waters for spawning. Soon after the spawning season, mainly from 

January to March, Atlantic wolffish migrate again to the shallow waters for feeding. There 

seems to be a similar migration pattern for Atlantic wolffish off Canada (Nelson and Ross, 

1992). Atlantic wolffish seems to be a rather stationary fish, while occasionally taking longer 

migrations. In the Icelandic tagging study, some Atlantic wolffish were recaptured about 300 

miles from the tagging place (Jónsson, 1982). As in most tagging studies, most of the 

recapture of Atlantic wolffish was within a year of tagging, but there were several examples 
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of Atlantic wolffish being recaptured a few miles from the tagging site, 2-7 years after being 

tagged (Templeman, 1984; Riget, 1988). However, none of the Atlantic wolffish were 

recaptured in waters of other countries than where the tagging was done. These studies 

indicate that some Atlantic wolffish take a long migration, while other seem to be rather 

sedentary.  

Other species such as cod (Pálsson and Thorsteinsson, 2003), showed that individuals 

exhibited different migration mode such as shallow or deep water feeding migration. In 

recent years, Pampoulie et al. (2008a) have shown that this feeding migration behavior of 

cod could be related to different Pan I locus genotypes. They have defined two genetically 

distinct behavioral types for cod in Icelandic waters, which have so far, not been investigated 

fully. Preliminary results suggest that within a spawning ground, individuals carrying the Pan 

IAA genotype are likely to display shallow water feeding migrations, while individuals carrying 

the Pan IBB genotype prefer deeper waters and forage near thermal fronts. The heterozygote 

exhibits either a shallow or deep water feeding migration. One of the main questions 

remaining to be solved concerning these behavioral types of cod, is to assess whether or not 

they belong to the same population or represent locally adapted behavioral units 

(evolutionary significant units which could be considered as management units).  

It has recently been recognized that behavioral ecology should meet molecular ecology as 

well as evolutionary ecology to fully fathom the dynamic of a commercial stock and/or of a 

species (Keogh, 2009). The use of DTSs information combined to a genetic study involving 

neutral as well as a HFCs approach might be promising to better understand the 

evolutionary trajectory of the targeted species, and to better understand the biodynamic 

processes responsible for stock structure. This project adds a new dimension in growth and 

maturity researches of Atlantic wolffish by attempting to assess the relationship among 

genetic diversity and life-history traits variation (HFCs). The present project will apply an 

integrated tagging-genetic approach combining genetic markers (involving neutral 

microsatellite loci) to Data Storage Tags (DSTs) as soon as the results of DSTs will be 

established. Furthermore, it will add information to life-history traits variation in order to 
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study the potential restricted gene flow among the Atlantic wolffish from the two areas and 

their potential adaptation to local environment. 

 

2. MATERIALS AND METHODS 
A more detailed description of the work can be found in a peer-reviewed paper entitled: 

“Genetic structure of the Atlantic wolffish (Anarhichas lupus L.) at Icelandic fishing grounds: 

another evidence of panmixia in Iceland“ by C. Pampoulie, S. Skirnisdottir, A. Daníelsdottir, 

A. Gunnarsson (Published in ICES Journal of Marine Science; see Appendix 1). 

2.1 Sampling  

The main sampling period for this study was in autumn 2010. In addition, sampling was done 

in 2011 and 2012. Archived samples from spring 2002 and 2004 were also analyzed. All 

sampling was done in research surveys performed by the Marine Institute in Reykjavík (MRI). 

Muscle tissue was taken for genetic analysis from each fish. Total length, whole body weight 

and gutted weight were measured for each fish, as well as liver and gonad weight. Sex and 

maturity stage were assessed for each individual and sagittal otoliths were extracted for age 

determination. 

2.2 Growth and maturity 

A total of 763 Atlantic wolffish, which were collected during the year 2010 were aged during 

this study, 397 from the west and 366 from the east areas. The age determination was done 

at MRI by counting the winter zone in sagittal otoliths under transmitted light, performed by 

a highly experienced person in age determination of Atlantic wolffish. The beginning of the 

first year was determined according to Gunnarsson et al. (2006).  

The analyses of growth of Atlantic wolffish were based on length-at-age data. The Schnute 

and Fournier (1980) growth model, which is derived from the Von Bertalanffy growth model 

and revised by Cook et al. (1999), was used to estimate growth. The t-test was performed to 

assess the difference in growth between the two locations (west and east) (Zar, 1999).  
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During the estimation of maturity, only female Atlantic wolffish were used because the 

estimation of maturity stages for male wolffish is much more complicated than of the female 

ones. Maturity stages were determined according to the maturity scale of Barsukov (1959), 

revised by Mazhirina (1988) (see also description in Gunnarsson et al., 2006). The estimation 

of maturity ogives was performed using a logistic regression analysis (Crawley, 2002), and 

age (A50) and length (L50) at 50% maturity were then calculated. Chi square test was used to 

compare maturity ogives between areas (Crawley, 2002) and t-test to assess if A50 and L50 

were different between areas. The measure of model fit was based on a pseudo-coefficient 

of determination (Swartzman et al., 1995). The biological data sampled was combined with 

the genetic markers to analyse HFCs (section 2.6), i.e. relationship between biology and 

heterozygosity indices of the genetic markers. 

2.3 Microsatellite genotyping 

Muscle samples were collected from individual fish and conserved in 99% ethanol. Two DNA 

extraction methods were tested and their quality evaluated. These two methods were 

Agowa mag Midi DNA Isolation Kit (Agowa GmbH) and Chelex 100 (Walsh et al., 1991). 

Samples were genotyped with 16 published microsatellite loci: Alu7, Alu9, Alu10, Alu11, 

Alu14, Alu21, Alu22, Alu23, Alu24, Alu25, Alu26, Alu27, Alu28, Alu29, Alu30 and Alu31 

(McCusker et al., 2008). The forward primers of each microsatellite pair was labeled with 

one fluorescent dye (6-FAM, VIC, NED or PET) and the reverse primers tagged on the 5´-end 

with a GTTTCTT PIG-tail (Brownstein et al., 1996). Polymerase Chain Reactions (PCR) were 

performed in a 10 µL volume containing 2 µL of Agowa DNA, 200 µM of each dNTP, 1X Teg 

buffer (100 mM Tris-HCl, pH 8.8; 500mM KCl; 15mM MgCl2; 1% Triton X-100), 0.9 U Teg 

polymerase (Olafsson et al., 2010), 0.0075-0.10 µL (100 µM) of the labeled forward primers 

and the same amount of reverse primers. PCR reactions were performed on a Tetrad2 

Peltier (Bio-Rad) thermal cycler as follows: an initial denaturation step of 3 min at 94 °C 

followed by 30 cycles of 30 s at 94°C, 50 s at 58°C, 50 s at 72 °C, and a final elongation step of 

7 min at 72 °C. The 16 microsatellite loci were run in four multiplex systems where Multiplex 

1 contained loci Alu21, Alu24, Alu25, Alu26 and Alu29; Multiplex 2 contained loci Alu7, Alu10 

and Alu11 (Alu7 PCRs were performed separately); Multiplex 3 contained loci Alu22, Alu27, 
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Alu28, Alu30 and Alu31; and Multiplex 4 contained loci Alu9, Alu14 and Alu23 (Alu9 PCRs 

were performed separately) but developmental work was needed for optimization i.e. by 

varying primer concentration and primers. In addition to the multiplex PCRs, all the 

microsatellite loci were amplified in separated PCRs in order to compare single locus 

genotyping results to the multiplex systems. Samples were analyzed on an ABI PRISM 3730 

sequencer using the GeneScan-500 LIZ size standard and genotyping scorings were done by 

using GeneMapper v4.0 and v4.1 (Applied Biosystems).  

2.4 Microsatellite statistical analysis 

The quality of the microsatellite loci was investigated using different software such as 

LOSITAN (Antao et al., 2008) to assess their neutrality, and GENEPOP’007 (Rousset, 2008) to 

assess their diversity. Genetic diversity of each sample (archived and contemporary) was 

evaluated using allele frequencies, observed (Ho) and unbiased expected heterozygosity (He) 

calculated in GENEPOP’007 (Rousset, 2008). Deviations from Hardy–Weinberg Expectation 

(HWE) were tested using the inbreeding coefficient FIS (Weir and Cockerham, 1984) 

implemented in GENEPOP and significance assessed with exact tests. Genetic differentiation 

was estimated using theta estimates (θ) (Weir and Cockerham, 1984) implemented in 

GENEPOP, and significance was assessed using allelic and genotypic frequency homogeneity 

tests (5000 permutations). The significance levels were adjusted by a simple Bonferroni 

correction (Rice, 1989) when multiple tests were applied.  

STRUCTURE 2.3.2 (Pritchard et al., 2000) was used to assess the potential number of 

populations within the contemporary samples. Due to the very low genetic differentiation 

level detected (see Results), the admixture model with the LOCPRIOR setting was used, 

which considers location information. This recently developed method (Hubisz et al., 2009) 

has been suggested to perform better than the traditional STRUCTURE methods when the 

genetic structure is weak or when the number of loci is low (< 20). The model was run with a 

“burn-in” period of 300 000 iterations and 600 000 MCMC iterations. The potential number 

of populations (K) varied from 1 to 8, and was tested with 5 independent analyses for each K. 

Then the archived samples were incorporated in the analysis. 
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As previously published, biological information have indicated differences between the 

eastern (STA) and western (STV) populations in Iceland (Gunnarsson et al., 2006), additional 

analyses were performed based on the possible existence of these two genetic groups, only 

using contemporary samples. First, the program FSTAT (Goudet, 1995) was used to assess 

potential differences of genetic diversity indices such as allele richness and observed and 

expected heterozygosity. Then a locus-by-locus hierarchical analysis of molecular (AMOVA) 

variance was performed using the program Arlequin (Excoffier et al., 2005). Because the 

previous biological investigation suggested a drastic reduction in population size, the 

effective population size (Ne) of Atlantic wolffish population using the linkage disequilibrium 

(Hill, 1981) and the temporal methods of Waples (1989) implemented in NEESTIMATOR 

(Peel et al., 2004) was estimated. For the temporal approach, all the archived samples from 

all regions were combined and they used as a reference point, both for the samples 

collected at the western and eastern regions. Ne estimates were also calculated for one 

single panmictic population of Atlantic wolffish. The archived samples were then only used 

for the temporal methods (Waples, 1989). 

2.5 Genes investigation 

An 850 bp fragment of the Rhodopsin gene was amplified for 160 selected samples in a 25 

µL reaction containing forward primer Rh193-FM3 5´ATGANTAYCCNCAGTACTACC´3 (Matís 

redesign from Chen et al. 2003) and the reverse primer Rh1039r 

5´TGCTTGTTCATGCAGATGTAGA´3 (Chen et al., 2003). The 25 µL PCR reactions contained 3 

μL Agowa DNA, 0.75 U of Taq polymerase (NEB), 1X Standard buffer (NEB), 50 µM each 

dNTP, and 0.16 μM of the forward and the reverse primers. The thermal cycling was 

performed in a Tetrad2 Peltier (Bio-Rad) but the PCR amplification cycle consisted of a 4 min 

denaturation at 94°C, followed by 35 cycles of 94 °C denaturing for 30 s, 58°C annealing for 

30 s and 68°C extension for 90 s. Cycling was concluded with a 7 min extension at 68°C. For 

PCR clean-up, 2.5 µL of the PCR products were mixed with 0.25 µL of ExoSAP-IT reagent and 

cycled according to the producer (Affymetrix). The sequencing of the fragment was 

performed by using the forward and reverse PCR primers and the BigDye Terminator v3.1 

Cycle Sequencing Kit according to the manufacturer’s instructions (Applied Biosystems). The 
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sequences were aligned and SNPs detection was done by using the software Sequencher 4.8 

(Gene Codes Coperation). PCR and sequencing of hemoglobin β and Hsc70 for the same 

selected samples were also tested by using published and Matís designed primers.  

2.6 Heterozygosity-Fitness relationships (HFCs) 

Although several genetic indices can be used for HFCs investigation, a general consensus 

emerges when it comes to natural wild populations. For microsatellite loci, the Multi-locus 

heterozygosity (MLHms), e.g. the number of heterozygous loci divided by the number of loci 

types, and the mean d2 distance, e.g. the mean square difference in microsatellite allele 

length of the two alleles, have been highly recommended for such investigations (Forstmeier 

et al., 2012; Coulson et al., 1998). Here, by using neutral genetic markers, it was investigated 

whether heterozygosity-fitness correlations (HFCs) could be detected. Namely, to investigate 

possible relationships among these two genetic parameters and growth rate, a measure of 

survival, in the Atlantic wolffish. To do so, MLHms and d2 distances for four different groups 

were calculated (the fast growing fish from the West and East and the slow growing fish 

from the West and East of Iceland). Furthermore, analyses for two groups, e.g. fast and slow 

growing fish (combined from each area) were also done. 

2.7 Data storage tags 

Before going further it should be mentioned that the tagging was scheduled to be in the first 

year of this project or 2010, however, as the project was not granted from Tækjasjóður 

Rannís (The Rannis Equipment Fund) for pursuing the DSTs tags until the year 2012, the 

tagging was delayed. The DSTs (see technical description in Appendix 2) was located on the 

right side of the abdomen of the fish and the T-bar on the left side just below the dorsal fin, 

to increase the probability that the tags will be noticed by fishermen i.e. the yellow tube that 

is attached to the DSTs tag was visible on the right side of the fish and the T-bar on the left 

side. The tagging was done in late 2012 and the fish was caught either by long line or bottom 

trawl. Each fish was weighted to the nearest grams (g) and measured to nearest centimeters 

(total length). Fin clip was collected from the tagged fish for future genetic projects. 
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3. RESULTS 

3.1 Sampling 

About 1800 genetic samples were collected during the project time (see Figure 2). A total of 

400 genetic samples were collected from the west of Iceland and 370 samples from the east 

of Iceland or a total of 770 samples from eight locations (Figure 2) in 2010. From each 

location, 100 samples were taken, except for one location where only 70 Atlantic wolffish 

were available.  

 

Figure 2. Sampling locations of Atlantic wolffish in Icelandic waters. Samples collected for the purpose of this 
project were collected in 2010, 2011 and 2012. Additional archived samples collected in 2002 and 2004 were 
analyzed to assess temporal variation of genetic diversity. 

In spring 2002, a total of 100 samples were collected from west of Iceland from one location 

(Figure 2). In the year 2004 a total of 173 samples were taken; 100 from 79 locations in the 

annual ground fish survey in spring and 73 samples from 34 locations in annual ground fish 

survey in autumn (Figure 2). Both surveys are performed annually by MRI. In the year 2011, 

a total of 400 samples were collected. In spring 2011, 100 samples were collected from the 

south of Iceland and 100 from the west and in the autumn, 100 samples were taken from 
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the west of Iceland and 100 from the east (Figure 2). In autumn 2012, a total of 100 samples 

were collected in a research survey performed by MRI on the main spawning ground of 

Atlantic wolffish west of Iceland (Figure 2). In addition, 254 genetic samples were collected 

from tagged Atlantic wolffish (fin clip). 

3.2 Growth and maturity 

The growth and maturity study showed that Atlantic wolffish west of Iceland grows faster, 

and matures younger and at a smaller size than those east of Iceland. In addition, the growth 

model indicates that the growth of Atlantic wolffish decreases with age. In the west area, 6 

years old fish grow 5 cm per year, while 17 years old fish grow 0.5 cm (Figure 3). In the east 

area, 7 years old fish grow 4 cm per year, while 17 years old fish grow 0.5 cm. The growth 

difference between same age classes between areas, decrease with higher age, it is about 

0.6 cm for 7 years old fish and 0.05 cm for 17 years old fish (Figure 3). The cohort specific 

effect (gc), which is a growth parameter indicating how fast the fish grows, was larger for 

fish in the west than in the east area (t-test, n = 761, P < 0.001; Figure 4).  

 

Figure 3. Growth of Atlantic wolffish west and east areas of Iceland. The symbol represents observed values and 
the lines fitted values from the growth model. 
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Figure 4. Cohort specific effect (gc) in Atlantic wolffish west and east areas of Iceland. The error bars represents 
95 % confidential intervals. 

The maturity ogives were different between areas for length (χ2, df = 1; 244, P < 0.001) and 

age (χ2, df = 1; 244, P < 0.001; Figure 5).  

 

Figure 5. Maturity ogives for length and age for Atlantic wolffish west and east areas of Iceland. The symbols 
represent observed values and the lines are based on predictive values from logistic regression. 
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However, the parameter L50 or the length when 50 % of the fish are mature was not 

different between areas (t-test, df = 245, P > 0.05, Table 1). This result can be explained by 

the large standard error of the L50 in the east area, resulting in an inaccurate estimate (Table 

1). The parameter A50, or the age where 50 % of the fish are mature, was however different 

between areas (t-test, df = 243, P < 0.001, Table 1). 

 

Table 1. Estimates ± SE of total length (L50) and age (A50) at 50 % maturity by years. A pseudo-r
2
 value is also 

given. 

Area L50 r
2
 n A50 r

2
 n 

West 65.00 ± 2.01 0.39 75 9.40 ± 0.18 0.25 75 

East 84.17 ± 23.09 0.06 172 17.10 ± 0.31 0.23 170 

 

3.3 Microsatellite genotyping 

Both DNA extraction methods (Agowa and Chelex) were successful and gave good quality 

DNA. However, the Agowa DNA isolation method was preferred for all samples. DNA was 

extracted from 770 samples sampled in 2010 and 265 archived samples sampled in 2002 and 

2004. In total 35 multiplex mixes were tested before the final four multiplexes were 

obtained. A total of 16 loci were genotyped with high efficiency for the 770 samples, which 

were sampled in autumn 2010 and 252 archived samples that were sampled in 2002 and 

2004. Comparisons of genotyping results from multiplex systems versus PCRs with single 

locus gave the same results. 

3.4 Population structure of Atlantic wolffish in Icelandic waters 

A total of 770 samples collected in autumn 2010 were genotyped (400 samples from the 

west of Iceland and 370 samples from the east) (Figure 2). All 16 microsatellite loci were 

highly polymorphic. Genetic diversity assessed as the number of alleles per locus was high, 

ranging from 6 (Alu7, Alu24 and Alu30) to 27 (Alu11) (data not shown). The expected 

heterozygosity (He) per sample ranged from 0.682 (archived sample of 2004) to 0.696 (west 

sample collected in 2010) (see Appendix 1 Table 2). Genotypic proportions were not in HWE 

in 14 out of 176 exact tests before correction for multiple tests (none of them were 
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significant after correction) and were not attributable to any specific loci or samples. None 

of the samples collected deviated from HWE (see Appendix 1 Table 2) significantly. 

Simulations for selection suggested that none of the observed variation detected at the 

studied microsatellite loci departed significantly from neutral expectations (data not shown).  

The overall genetic estimates based on combined archived and contemporary samples did 

not reveal significant level of differentiation (FST = -0.00006, p > 0.05, 95% CI: -0.0005–

0.0004) and of inbreeding (FIS = -0.00006, p > 0.05, 95% CI: -0.0086–0.0066). This genetic 

pattern was reflected in the pairwise FST comparisons of samples as none of the comparisons 

remained significant after Bonferroni correction (see Appendix 1 Table 3). The pairwise FST 

comparisons among weekly temporal samples (sample 5 vs. 6; samples 1, 2 and 4) did not 

reveal any significant temporal variation within the two weeks interval considered. In 

addition, none of the archived samples were genetically different from the contemporary 

ones (see Appendix 1 Table 3).  

The Bayesian cluster analysis performed on contemporary samples (using location 

information) confirmed the observed pattern with the pairwise FST comparisons and showed 

that the most likely number of K (populations) was 1 (mean Ln P(D)±S.D.: K=1, −32692±85; 

K=2, −39459±709; K=3, −40107±2213 K=4, −42522±7106; K=5, −46172±14426; K=6, 

−50813±23676; K=7, −42075±5874; K=8, −40390±2483). The inclusion of archived samples 

did not affect the results (data not shown).  

The locus-by-locus AMOVA also confirmed this pattern as the overall among-groups 

differentiation was not significant between contemporary samples collected in waters east 

and west of Iceland (see Appendix 1 Table 4), even if two microsatellite loci revealed weak 

significant differences between groups.  

Finally, the genetic diversity indices comparison among regions (eastern vs. western) using 

permutation tests implemented in FSTAT did not reveal any significant pattern (Eastern: HO = 

0.689, HE = 0.691, AR = 9.563; Western: HO = 0.697, HE = 0.695, AR = 9.679, p > 0.05). Genetic 

differentiation among eastern and western regions was also not significant (FST = 0.0002, p > 

0.05, 95%). In addition, comparison between each region and archived samples using the 
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same test did not reveal any loss of genetic diversity within the time period investigated 

(Archived: HO = 0.690, HE = 0.690, AR = 9.608; P > 0.05).  

Estimates of effective population size for each region using several methods are listed in 

Appendix 1 Table 5. The linkage disequilibrium methods (Hill, 1981) led to large 95% 

confidence intervals for both regions and suggested that Ne was usually higher in the 

western region than in the eastern one (see Appendix 1 Table 5). The temporal approach 

(Waples, 1989) also led to very large estimates of Ne for both regions (see Appendix 1 Table 

5). 

3.5 Genes investigation 

The sequencing of the Rhodopsin gene gave 744 bp long sequences for 156 samples. Three 

SNPs were detected in the Rhodopsin gene sequence and none of the mutations observed 

(SNPs) induced a change in the amino-acid sequence coded by the gene (synonymous 

mutation). In addition, these SNPs were observed in a very limited number of individuals, 

suggesting that the Rhodopsin gene is relatively conserved in Icelandic Atlantic wolffish and 

cannot be used to asses genetic structure. Only eight individuals out of 156 (5 from the east 

and 3 from the west) exhibited changes (SNPs) in their sequences compared to the reference 

sequence. No sequencing results were obtained for the two other genes investigated, e.g. 

the hemoglobin β and Hsc70 genes. Therefore no other statistical analyses than descriptive 

approach were performed for these three genes. 

3.6 Heterozygosity-Fitness relationships (HFCs) 

By using neutral genetic markers, it was investigated whether heterozygosity-fitness 

correlations (HFCs) could be detected. By using the following groups: fast growing fish from 

the east, fast growing fish from the west, slow growing fish from the east, slow growing fish 

from the west, no differences in MLH (ANOVA, df[3,156] F=0.255, P=0.858) or d2 (ANOVA, 

df[3,156] F=0.504, P=0.680) were observed among the groups. Combining the fast growing and 

slow growing fish from the different areas resulted in the same pattern, no differences in the 

genetic indices could be found between the slow and fast growing fish (MLH: ANOVA, df[1,158] 

F=0.051, P=0.822; d2: ANOVA, df[1,158] F=0.327, P=0.568). In addition, for this set-up, no 
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correlation could be found between the growth rate and the genetic indices (fast versus 

slow growing fish). Therefore HFCs could not be investigated further. 

3.7 Data storage tags 

In September 2012, a total of 40 Atlantic wolffish were tagged at Glettingarnes east of 

Iceland (a similar location to where most of the genetic samples were sampled east of 

Iceland in 2010) (Figure 2). Among them, 31 fish were tagged with DSTs and T-bar tags and 9 

with only T-bar tags (Figure 6). The fish were caught by long line. Fin clip was collected from 

each fish for the genetic analysis. Then, in late November and in the beginning of December 

2012, 394 Atlantic wolffish were tagged at Látragrunn west of Iceland (at same or similar 

locations where the genetic samples were collected in 2012) (Figure 2). The fish were caught 

by bottom trawl. Out of the 394, 191 were tagged with DSTs and T-bar tags and 203 with T-

bar tags. Fin clip was collected from each fish tagged with DSTs and from 32 fish tagged only 

with T-bar tags for future genetic projects.  

 

Figure 6. Tagged Atlantic wolffish from Glettingarnesgrunni east of Iceland. The yellow tube is connected to the 
DSTs tag (see picture in the upper right corner) and goes out of the abdomen of the fish. 
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4. DISCUSSION 

The major aim of this project was to apply state of the art population genetics approaches to 

estimate the genetic variations within and among each geographically separated fishing area 

of Atlantic wolffish in Icelandic waters. In this study, SNP study of the Rhodopsin gene and 

16 previously developed microsatellite loci were employed to indirectly assess gene flow, 

e.g. the exchange of genes, among populations of the targeted species located at the west 

and east of Iceland. The results of the present study revealed that this species is not 

genetically structured around Iceland. The results are supported by the lack of differences in 

the genetic diversity indices of the collected samples, a non-significant overall FST, the 

temporal stability of replicates both on a weekly and long-temporal scale (see FST results), 

and the absence of distinguishable genetic groups during the Bayesian cluster analysis. The 

lack of genetic structure for this species is discussed in terms of gene flow, recent isolation of 

populations and effective population size.  

In the case of the Atlantic wolffish, one would expect to find reproductively isolated 

populations due to its peculiar life-cycle, e.g. genetic differences among the investigated 

geographical samples. Although the species undertakes feeding as well as breeding 

migration, it has been suggested that adults of Atlantic wolffish are sedentary and do not 

usually undertake extensive migration (Jónsson, 1982; Nelson and Ross, 1992), therefore 

limiting gene flow among populations. In addition, the reproductive tactics and the 

peculiarities of the eggs and larvae are also likely to prevent passive gene flow among 

populations through dispersal of young stages. The fertilization of the eggs is internal (Pavlov 

and Mokness, 1995) and eggs are deposited in a nest that the male guards until hatching 

(Pavlov and Novikov, 1993). The larvae will typically hatch at a size around 20 mm and 

almost exclusively stay around the nest area until the juveniles become bottom dwelling 

owing to their large size and negative buoyancy (Bigelow and Schroeder, 1953; Moksness 

and Pavlov, 1996). Therefore, even though there is an apparent lack of gene flow due to the 

biology of the species, the observed genetic pattern might be explained by other alternative 

hypotheses.  
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One of the most likely explanations for the absence of genetic structure despite the 

apparent lack of gene flow would be the recent isolation of the west and east wolffish 

populations in Icelandic waters. Given enough time, drift would typically have led to genetic 

differentiation of subpopulations in such a species, but marine populations around Iceland 

tend to be young and to originate from ice-free refugia during the Last Glacial Maximum 

(LGM) some 20-25 cal. Kyr BP (Coyer et al., 2003; Maggs et al., 2008; Pampoulie et al., 

2011a; Pampoulie et al., 2008b). During LGM, most of the Icelandic waters were covered 

with a 1,500-2,000 m thick ice-cap, which reached the break of the shelf (Ingólfsson et al., 

2010; see Fig. 4.1). The ice-cap rapidly collapsed from sea-waters and retreated onto 

present-day dry land between 14.9-13.9 cal. Kyr BP (Ingólfsson et al., 2010; see Fig. 4.2). The 

re-colonization of ice-free environment by marine organisms could therefore start at around 

13 cal. Kyr BP in Iceland, a time, which might not have been sufficient enough to promote 

genetic differentiation at neutral markers. The post-glacial history of re-colonization of 

Icelandic waters has already been suggested to be at the origin of the present-day genetic 

pattern of commercial fish species such as the Atlantic cod (Pampoulie et al., 2008b; 

Pampoulie et al., 2008c; Pampoulie et al., 2011b), and has also been suggested to be at the 

origin of the genetic structure of Atlantic wolffish across the North Atlantic ocean (McCusker 

and Bentzen, 2010). The recent re-colonization of Icelandic waters by the Atlantic wolffish 

would have resulted in a typical lack of mutation-drift equilibrium due to recent population 

expansion, hence the lack of genetic differentiation, a pattern that has been consistent 

within Icelandic marine populations (Pampoulie et al., 2008b; Pampoulie et al., 2008c; 

Pampoulie et al., 2011b). Therefore, the present study is fully consistent with genetic studies 

performed on the genus Anarhichas in the North Atlantic suggesting a very limited genetic 

structure due to recent isolation of populations (McCusker and Bentzen, 2010; McCusker and 

Bentzen, 2011).  

The apparent lack of the genetic structure, and the long-term stability were also reflected in 

the estimates of population sizes (see Ne in Table 5 in Appendix 1). Both the linkage 

disequilibrium and the temporal methods revealed that the lower estimated Ne was around 

or higher than 2000 for the Eastern and Western populations, even when one panmictic 
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population was considered. Only the archived samples exhibited lower estimates (642 < Ne < 

1253). However, such high estimates of Ne are commonly interpreted as evidence of 

conserved evolutionary potential of exploited populations (Franklin, 1980; Poulsen et al., 

2006). In addition, the comparison of allele frequencies and the comparison of genetic 

diversity indices among contemporary and archived samples, revealed a lack of genetic 

differences and did not bring evidence for any loss of genetic diversity despite the previously 

mentioned decline of population size in Icelandic populations of Atlantic wolffish (Anon, 

2010). The present study is therefore in line with several studies performed on neutral 

genetic diversity and showing a stable temporal pattern despite drastic stocks’ 

overexploitation (Cuveliers et al., 2011; Hauser et al. 2002; Pujolar et al., 2011; Ruzzante et 

al., 2001). However, detecting a loss of genetic diversity at neutral genetic markers might not 

be suitable to assess the potential loss of adaptive genetic variation due to fisheries as 

mentioned in the case of the Icelandic cod (Jakobsdóttir et al., 2011).  

In this study Atlantic wolffish grew faster and matured younger and at a smaller size in the 

warm water west of Iceland than in the colder one east of Iceland. Atlantic wolffish has been 

previously reported to grow faster in warmer than in colder waters (Barsukov, 1959; 

Gjøsæter et al., 1990; Gunnarsson et al., 2006; Hansen, 1992; Liao and Lucas, 2000; Nelson 

and Ross, 1992; Pavlov and Novikov, 1993). However, the present results showed that fast 

growing female Atlantic wolffish mature younger and at a smaller size than the slow growing 

ones (Figure 4-6), which is in accordance with Gunnarsson et al. (2006) and life-history 

theory, which predicts that the relationship between growth and maturity involved either 

fast growing and early maturation, or slow growing and delayed maturation (Lambert et al., 

2003). No differences in the genetic indices could be found between the slow and fast 

growing fish. In addition, no correlation could be found between the growth rate and the 

genetic indices (fast versus slow growing fish).  

The Atlantic wolffish is currently managed as a single fishing unit in Icelandic waters, and 

although the genetic approach developed during this study does not suggest the presence of 

reproductively isolated populations, we recommend that biological parameters, such as 

variability in mean size, age at maturity and growth pattern, which vary between Western 
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and Eastern populations, should be taken into account for future management advice as 

already stated (Gunnarsson et al., 2006). 
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APPENDIX 2 

 

 

Data storage tags characteristics 

 

DST milli - L 

Data Storage Tag milli L, low cost TD logger 

Overview 

Dimensions (diameter x length): 12.5mm x 38.4mm 

Sensors: Temperature, pressure (depth) 

Standard temperature range: -1°C to +40°C 

Temperature accuracy: +/-0.1°C 

Depth ranges: 10cm to 20m, 10 cm to 50m, 10cm to 100 m, 1 m to 250m, 5m to 500m or 5m to 

800m 

Depth accuracy: +/-0.8% of selected range 

Memory size: 87,000 measurements in total 

Battery life: 3 years 

Housing material: Alumina (implantable, biocompatible ceramic material) 

Description 

The DST milli-L is a miniature data logger that records temperature and pressure (depth). Recorded 

data is stored in the logger‘s internal memory with a real-time reference for each measurement. 

The DST milli-L is supported by the SeaStar software and the Communication Box which serves as an 

interface between the logger and a PC. Communication between the logger and the Communication 

Box is wireless. 

In SeaStar, the user sets the start time, start date and sampling interval before starting the recorder. 

Up to seven different intervals can be set for the same measurement sequence. This is especially 

useful when more frequent measurements are needed at a certain time period. 

With default programming temperature and pressure are recorded as pairs. Optionally, they can be 

set as primary and secondary parameters with different sampling frequency. That way memory 

partitioning can be customized according to individual preferences. 
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After recovering the DST recorded data is uploaded to SeaStar where results are displayed both in 

graphic and tabular form. After retrieving the data, the DST can be re-programmed and reused as 

long as the battery lasts. 

A set of Communication Box and SeaStar software needs to be purchased with the first order. 

Star-Oddi also offers protective logger housings for use at fixed locations or gear. 

For more information about accessories please click here. 

Features on Request 

Extended memory 

All DST milli products are available with an extended memory capacity of 682,000 measurements in 

total (FLASH memory, DST milli-F). Total memory size is divided between the two sensors 

temperature and depth. Please note that the FLASH memory consumes a little more energy from the 

batteries. 

 

Temperature calibration outside standard range 

Temperature calibration outside of standard ranges or for smaller ranges is available for all products 

on request. 

Examples of Application 

DST milli-L is an ideal low cost temperature depth logger for fish or marine animal tagging projects, 

where large quantities of archival tags are needed at reasonable cost. For recapture purposes Star-

Oddi marks each tag with a custom defined text containing information on how to return tags and 

reward. The DST milli-L can also be deployed subsea at mooringsr, fastened to fishing gear or other 

underwater equipment, collecting valuable data.  

The DST milli-L is suitable for studies within: 

 Fish and marine animal tagging (internally or externally) 

 Oceanography 

 Marine biology 

 Agricultural and cattle 

 Hydrology 

 Ecosystems research 

 Temperature and pressure measurement in liquids, vials etc. 

 Pharmaceutical production (quality control) 

 Any other field where temperature and pressure recordings are required 

You can read more about research studies and scientific papers here. 

http://star-oddi.com/products/accessories-2/
http://www.star-oddi.com/Home/Aquatic-Fisheries-Research/Scientific-Papers/


    

38 

 

Technical Specifications 

Sensors Temperature and pressure (depth) 

Size (diameter x 

length) 
12.5mm x 38.4mm 

Housing 

material 
Alumina (Ceramic) 

Weight (in air/in 

water) 

in air: 9.2g 

in water: 5g  

Memory type Non-volatile EEPROM 

Memory 

capacity 
87,000 measurements in total * 

Memory 

capacity bytes 
130,750 bytes / temperature 1.5 bytes, pressure 1.5 bytes * 

Memory 

extension 

option 

1,048,064 bytes (FLASH memory) * 

Memory 

management 

- Custom programming of intervals 

- Primary and secondary parameter 

Data resolution 12 bits  

Temperature 

resolution 
0.032°C (0.058°F) 

Temperature 

accuracy 
+/-0.1°C (0.18°F) 

Temperature 

range 
-1°C to +40°C (30°F to 104°F)** 

Temperature 

response time 
Time constant (63%) reached in 12 sec. 

Standard depth 

ranges 
0.1m-20m, 0.1m-50m, 0.1m-100m, 1m-250m, 5m-500m, 5m-800m 

Depth 0.03% of selected range 
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resolution 

Depth accuracy +/- 0.8% of selected range 

Depth response 

time  
Immediate 

Data retention 25 years 

Clock 
Real time clock 

Accuracy +/-1 min/month 

Sampling 

interval 
In second(s), minute(s) or hour(s) 

Number of 

different 

sampling 

intervals 

1 to 7 

Communications Communication Box, RS-232C 9 pin serial and USB 

Attachment 

hole 
0.9 mm (in diameter) 

Battery life 3 years*** 

* Total memory is divided between the two sensors. 

** Outside ranges available upon request. 

*** For sampling interval of 10 minutes, temperature & depth recorded simultaneously. 

Specifications may change without notice.  

 

 


