

Sustainable and cost-efficient replacement of fish meal by animal and plant protein in feeds for Atlantic salmon salmo salar

By P. Leyton, <u>S. Refstie</u>, J. Árnason, G. Lehnebach & T. Åsgård

Objectives

Replace the fish meal in salmon diets by *plant protein* and *avian by-products* to investigate effects on

- 1. Growth and feed utilisation
- 2. Cost efficiency
- 3. Fish in / fish out
- 4. Productivity

Feedstuffs

Protein sources:

- Fish meal (FM)
- Shrimp meal
- Poultry by-products meal
- Feather meal
- Corn gluten meal
- Wheat gluten
- Soybean meal
- Lupin kernel meal

Other:

- Fish oil
- Wheat meal
- Vit + min premix
- Phosphorus
- Lysine HCI

Test diets - composition

	5% FM	10% FM	20% FM	36% FM
CP, %	41.0	41.2	40.7	41.4
Lipid, %	29.8	29.9	30.1	30.2
Ash, %	5.1	5.9	5.9	7.1
USD / tonn*	620	663	772	1000 100 100 100 100 100 100 100 100 10

*Prices on Chiloe Island in July 2006

Test diets – 36% vs. 5% fish meal

Ingredient cost and use of marine protein in the diets

Ingredient cost, USD / ton feed

• Use of marine protein, kg / ton feed

Fish and experimental details

- Location: Salmofood's model sea farm at Liucura (Chiloe, Chile)
 Fish: Atlantic salmon; IBW = 721 g 1500 fish / pen
 Pens: 12 7 x 7 x 7 m
- Replication: 3 pens / treatment
- Saltwater

- (11 -13 °C)
- 116 feeding days

Weight gain

Growth (TGC x 1000)

FCR (feed intake / gain)

The aim of productivity is maximum efficient utilisation of resources

Increased net fish production (fish in / fish out < 1)</p>

Ingredient cost and use of marine protein per ton salmon produced

Ingredient cost, USD / ton fish produced

• Use of marine protein / ton fish produced

Wild fish caught for fish meal production / ton salmon produced

Ton edible salmon produced / ton edible fish caught for fish meal production

Unit produced / unit spent marine protein

Conclusions

Reducing the dietary FM from 36 to 5%

- Only marginally affected growth
- Increased the FCR by 8.5%
- Reduced raw material costs by 31%
- Reduced marine protein use by 76%
- Made Atlantic salmon a net producer of marine protein, producing 2.5 times as much as it consumed

Perspectives

- Further growth in aquaculture requires efficient use of marine feedstuffs
- Production and processing of grains offers a wide variety of protein sources
- Animal and aquaculture by products may be "re-circulated" into excellent protein sources for fish
- Salmon farming may become independent of fish meal

Future fish feeds contains little fish!

Thank you.