

Arsenolipids in brown algae *Ectocarpus*

Ásta H. Pétursdóttir^{1,2,3}, Kyle Fletcher³, Helga Gunnlaugsdóttir¹, Frithjof Kuepper³ and Jörg Feldmann²

Introduction

- Seaweed is growing in popularity, e.g. for cooking, snacking, as a food supplement and as well in various skincare products.
- Seaweed is high in nutrients, such as minerals and vitamins, however, can have

Arseno fatty acid, AsFA390

Seawee

toxic (iAs)

non-toxic (AsB)

arsenic fractions

Results

- The totAs was determined in all fractions: lipid soluble (LS), water soluble (WS) and residue (RS), Figure 5.
- AsLp and AsSugar profiles quantified with ICPMS and identified with ESIMS, Figures 7.

40

2 7

- high total arsenic (totAs) conc.
- The majority is on the form of arsenosugars, with low percentage of toxic inorganic arsenic (iAs), Figure 2.
- Arsenolipids (AsLps) have recently been found in seaweeds, Figure 1.
- Arsenic accumulates in seaweed since \bullet phosphate transporters take up arsenate (iAs) in addition to the phosphate.
- Biosynthetic pathway for the formation of arsenolipids has been suggested but not proven.

Aim and hypotheses

- Grow *Ectocarpus* (EC) from single cell and compare to naturally growing *Ectocarpus* and related algae.
- Study the dependence of AsLps and AsSugars on environmental conditions such as nutritional status and oxidative stress.
 - Will nutrient deficient seaweed conserve N or P, e.g. by replacing choline in phospholipids (PL) with arsenosugar?

Materials and methods

Figure 5. Distribution between water soluble arsenic species (WS), lipid soluble arsenicals (LS) and the arsenic still bound in the residue (RS) after sequential extraction for: a) Ectocarpales species found in natural habitat, includes the total arsenic (totAs) c) Ectocarpus cultures. Also a close up of the LS fraction: b) Ectocarpales d) cultures. Error bars represent standard deviation.

- Seaweed samples extracted in methanol/dichloromethan (1:2) and AsLps seperated on reverse phase (RP) C18 column and introduced simultanously to ICP-MS and ES-MS (orbitrap).
- Extracted in water and AsSugars measured on HPLC-ICP-MS with anion exchange column
- totAs in residue determined.

Sample design

- Three strains (S1-S3) of *Ectocarpus* grown at:
 - Ctrl: Control (1/2 Provasoli) N: Low nitrate (1/3 N of ctrl) P: Low phosphate (1/3 P of ctrl) OS: Oxidative stress $(+ H_2O_2)$
- S3 also grown +2 ppb arsenic.
- As conc. in provasoli media 0.8 ppb.

Conclusions

The concentration of AsLps is similar in EC cultures and EC nature, Figure 5.

and S3+As

Figure 4. Schematic of the sample design

- Majority of arsenic in cultures is non-extractable, Figure 5. Bound in membranes?
- AsHC360 is the main AsLp in EC cultures and EC nature.
- Good repeatability between 3 replicate cultures, Figure 6.
- Increased production of AsLps under stress for S1-S2 (not shown).
- Additional arsenic in media leads to higher production of AsHCs, Figure 6 a) and b).
- For low phosphate conditions there is a significant increase in production of AsPLs (S3) but no AsSugars containing phosphate were present (S1-S3), Figure 6.

Figure 7. a) Arsenolipid profiles and quantification for S3. Condition statistically significant from ctrl using ANOVA: *P<0.05, **P<0.001 b) Arsenolipid profiles and quantification for S3 at enriched arsenic conditions. c) AsSugar profile and quantification for S3 + As.

Ásta H. Pétursdóttir (astap@matis.is; http://www.matis.is) ¹ Matís Itd ²Dept of Chemistry, University of Aberdeen, Scotland. ³Ocean lab, University of Aberdeen, Newburgh, Scotland.

Innovation and Consumers Biotechnology and Biomolecules Food Safety, Environment and Genetics **Analysis and Consulting** Value Chain, Processing and Aquaculture Matís ohf. • Vínlandsleið 12 • 113 Reykjavík • Iceland • Tel +354 422 5000 • Fax +354 422 5001 • matis@matis.is • www.matis.is